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Sliding mode observer-based control for a class of bioreactors
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Abstract

A robust control algorithm which uses partial state feedback is designed for a class of biochemical processes in the presence of modeling
uncertainties. To design the controller, the model uncertainty and the nonmeasurable state are combined into a new state variable. A sliding
mode state observer is used to obtain on-line estimates of this new state. A practical stabilizer is obtained by combining the observer with an
input–output linearizing controller. The practical convergence of the observer and the controller are proved. The performance of the sliding
mode observer and the closed-loop behavior is illustrated through numerical simulations. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

During the last decade, there has been a growing interest
on biotechnological processes. These processes requires
high-performance control techniques due to increased de-
mands on productivity, product quality and environmental
responsibility. However, two of the major obstacles in the
application of computer control algorithms for biotechno-
logical processes are the difficulty of modeling the growth
kinetics of microorganisms and the lack of reliable, steriliz-
able and robust sensors for the on-line measurements of pro-
cess key variables such as biomass, substrate, precursor, and
product concentrations [20]. Sensors in the biotechnolog-
ical field are generally less reliable than their counterparts
in other industries [11]. The non-measurable variables in a
bioreactor are obtained using indirect techniques [19,21,22].
The first attempts to estimate unknown variables related to
continuous bioreactors involved macroscopic component
balances. Some of these approaches involved batchwise
analyses which are done manually. Therefore, these tech-
niques are time consuming, require a lot of manpower and
may result in very expensive solutions as far as the mea-
surements of very specific compounds are concerned. One
way to avoid these problems is to use estimation strategies.
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An excellent review of estimation techniques is provided
in [4]. Nowadays, there is a growing interest in the de-
velopment of estimation strategies to control continuous
bioprocesses, which are highly nonlinear processes. Esti-
mation and control strategies based directly on nonlinear
models may improve performance [16]. Many of the strate-
gies to estimate nonmeasurable states and disturbances for
partially known systems are based on the extended Kalman
filter (EKF) and variations thereon [9,11,12,16]. Some other
works are based on high-gain observers [4,17,18,24].

For nonlinear processes whose nonlinearities are strong,
linear controller design techniques often become inadequate
when sufficient large excursions from steady state takes
place. For these processes, more efficient alternatives must
be considered. A great development in nonlinear control
theory in the last few years has been the characterization
of linearizable systems, i.e. systems that can be linearized
by means of a change of coordinates and state feedback.
Linearization of nonlinear systems is related with the can-
cellation of input/output nonlinearities under the assumption
of a perfect knowledge of these terms. A feedback control
scheme designed with this approach guarantees closed-loop
stability and output tracking [13]. In general, the problem of
obtaining an exact knowledge of the nonlinearities present
in a system is not an easy task. Since the nonlinear terms are
not fully known, the linearizing controller can provide a poor
performance or even induce instabilities [10]. For the stabi-
lization of chemical reactions there are several approaches
which are based on Taylor linearization of the reactor
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dynamics. These works assume that the uncertainties be-
long to certain conic sector [3,15]. These approaches have
several weaknesses. The main properties of the chemical
reactors cannot be exploited when the model is locally lin-
earized. In addition, many uncertainties and disturbances
cannot be included in a conic sector. This situation can lead
to conservative control law designs and consequently poor
closed-loop performance.

Recently, new techniques to get on-line estimates of the
uncertainty terms in chemical reactors, for both modeling
and control purposes, have been developed. These tech-
niques use filtering [9] and calorimetric balances [22]. The
advantage of these approaches is their easy computational
implementation. Besides, their structure has a strong phys-
ical meaning, without the restrictions of the methods men-
tioned above. However, the calorimetric balance techniques
become unstable when the measurements are noisy.

In the spirit of calorimetric balances, another kind of
observer structures can be used: sliding mode observers
(SMO). SMO are robust observers which estimate the state
of a nonlinear uncertain system. SMO are well suited for
nonlinear uncertain systems with partial state feedback [17].
The main advantage of SMO, over a linear observer such as
a Luenberger observer, is that SMO can be made consider-
ably more robust to parametric uncertainty, external distur-
bances and noisy measurements [27]. The main drawback of
SMO is that extensive efforts in the design procedure must
be taken to guarantee robustness for bounded modeling er-
rors [25]. The aim of this work is to show that SMO can
be used successfully to design a robust control strategy for
a class of bioreactors. The central idea of this approach is
to consider the modeling uncertainties as a new non mea-
surable state variable. The resulting controller is a practical
one and only substrate concentration measurements are re-
quired for its implementation. We provide the conditions for
the convergence of the observer and the controller. Some of
the observer parameters have physical meaning.

This work is organized as follows. In the next section,
the class of bioprocesses to be studied is discussed and
a precise statement of the problem is presented. To cope
with the lack of on-line biomass concentration measure-
ments and the presence of model uncertainties, an SMO
is proposed in Section 3. In addition, using this observer,
an observer-based input–output linearizing controller is ob-
tained. The conditions for the convergence of the observer
and the controller are established in this section. Section 4
illustrates the open-loop and closed-loop dynamic behav-
ior through numerical simulations. Section 5 describes the
future work to eliminate the chattering effect. Section 6
concludes the work.

2. System description

Bioreactors are generally regarded as containers which
are used to synthesize products by means of biochemical

reactions. In a bioreactor, microorganisms utilize available
nutrients for growth, biomass maintenance, and product for-
mation. The most important bioreactor for industrial ap-
plication is the conventional mixing vessel which has the
advantages of low cost and low operating costs.

In this work, the process is composed for a simple mi-
crobial culture, which involves a single biomass growing on
a single substrate and yielding a single product. The reac-
tions take place in a continuous stirred tank reactor (CSTR)
and there are no cells in the feed. This system was chosen
because, despite this process being the simplest one, its dy-
namical behavior is complex [1]. Moreover, several impor-
tant industrial processes belong to this class (e.g. wastewater
treatment process). In the next subsection, the mathematical
model to describe the bioreactor is presented.

2.1. Mathematical model

The function of a biological model is to describe the
metabolic reaction rates and their stoichiometry on the basis
of present and past bioreactor conditions. The models used
to describe bioreactors can be divided into unstructured and
structured ones [5].

The unstructured models are the simplest. The unstruc-
tured models are based on the assumption that biomass and
substrate can be adequately described by single parameters.
In many cases this assumption is reasonable because it is
impossible to have exact knowledge of the heterogeneous
composition of the biomass and the state of the intracellular
systems. Unstructured models describe a condition called
balanced growth. This is a quasi-steady state assumption,
which requires that the environment of the biomass changes
sufficiently slowly so that the biomass can adjust its internal
composition to adapt to the changes.

In unstructured models the microorganisms (biomass) and
nutrients (substrate) are viewed as homogeneous compo-
nents. In a process with a single biomass growing on a single
substrate, the variables that define the system are biomass
z (g/l) and substrates (g/l) concentrations in the bioreactor.
Growth of microbial cells in a suitable medium results in
the consumption of substrate and sometimes the formation
of products. The dynamic behavior ofz ands are obtained
using mass balances for a CSTR. The mass balances lead to
the next system of ordinary differential equations

ż = −Dz+ µ(s)z (1)

ṡ = −D(sf − s)− µ(s)z

Yd(s)
(2)

whereD is the dilution rate (h−1), sf the inlet substrate
concentration (g/l),Yd(s) the yield production coefficient
andµ(s) is the specific growth rate (h−1). The second term
in (1) represents the microorganisms’ growth rate. Corre-
spondingly, the second term in (2) represents the substrate
consumption rate.
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Several basic types for the specific growth rate (µ(s)) have
been proposed [5]. Despite some objections to the Monod’s
equation, this one and variations thereon are probably the
most widely used, primarily because they are simple and
mathematically tractable. The Monod’s equation is analo-
gous to the Michaelis–Menten enzyme kinetics and can be
expressed as

µ(s) = µms

Km + s
(3)

whereµm andKm are positive constants which are charac-
teristics of the organisms and growth substrate.

In an experimental continuous bioreactor, Dibiasio et al.
[7] verify the existence of multiple steady states. Through
steady-state analysis, several researches [1,8] conclude that
nontrivial multiplicity and oscillatory phenomena were not
possible for a constant yield production coefficient. The yield
production coefficient (Yd ) is an extremely important pa-
rameter since it represents the efficiency of conversion of
the substrate into biomass. Agrawal et al. [1] found that in a
bioreactor with specific growth rate given by Monod’s equa-
tion, a linearly increasing yield coefficient

Yd(s) = a′ + b′s (4)

leads to a dynamic behavior characterized by a self-sustained
oscillation, wherea′ andb′ are positive constants.

2.2. Main assumptions

The main theoretical assumptions for the development of
the control strategy are listed below. These assumptions are
made using some physical properties of the systems under
study.

Assumption 1 (A1). Both concentrations (substrate and
biomass) have finite values, which can be mathematically
expressed as

0 ≤ s(t) ≤ sf , 0 ≤ z ≤ zmax

Remark 1 (R1). This assumption is in accordance with the
experimental evidence. The continuous bioreactors display
a self-regulatory property. During growth, new cell mass is
formed autocatalytically from substrate. Microbial reactions
usually show saturation at high substrate concentrations,
i.e. reaction rates approaches a maximum value. On the
other hand, the reaction rates equal zero if no substrate is
available.

Assumption 2(A2). On-line measurements of the substrate
concentration are available.

Assumption 3 (A3). On-line measurements of the biomass
concentration are not available.

Remark 2 (R2). For most of the bioprocesses, A2 and A3
are realistic assumptions. In general, getting estimates of
the biomass concentration is an expensive procedure and it
induces very large delays on the closed-loop system.

Assumption 4 (A4). The functions for the specific growth
rate and the yield production coefficient are bounded and
unknown.

Remark 3 (R3). In general, the kinetic rates involved in
biological processes are very complex functions of the oper-
ating conditions and of the state of the process. Therefore,
in accordance withA3 its value cannot be obtained. In ad-
dition, the analytical modeling of these functions is often
cumbersome and still constitutes the subject of continuing
and intensive investigations.

2.3. Problem statement

The control objective for the bioreactor given by (1) and
(2) is to regulate the substrate concentration (control output)
at a prescribed set point (sref) manipulating the dilution rate
(control input).

Let us define the regulation error as:s̄(t) = s(t) − sref.
Suppose that the closed-loop performance for the regula-
tion error is specified through the desired closed-loop time
constantτc > 0. This means that the desired closed-loop
performance is

˙̄s + τ−1
c s̄ = 0 (5)

which guarantees that

lim
t→∞s̄(t) = 0

Following [13], the linearizingideal control law for the
substrate concentration (2) can be computed as

D = 1

sf − s

(
τ−1

c s̄ − µ(s)z

Yd(s)

)
(6)

The bioreactor has a relative degree of unity [13]. Then,
the biomass concentration defines the internal dynamics for
the bioreactor. In accordance with A1, the internal dynamics
is stable. It is clear that the ideal control law (6) cannot be
applied just as it is because, in accordance with A3 and A4
the termµ(s)z/Yd(s) is unknown.

The problem to face in this work is to control a partially
known system. To control this kind of processes, several
techniques have been proposed [4,6,17,24].

To overcome the lack of on-line values of the substrate
consumption rateµ(s)z/Yd(s) to compute the linearizing
control law, we propose:

1. to consider the state vector composed by the sub-
strate concentration and the substrate consumption rate
(µ(s)z/Yd(s));

2. to use an SMO to get on-line estimates of the substrate
consumption rate.
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The first part of this approach has been used before
[2,9,11,16,17,27]. The SMO was chosen to estimate the
substrate consumption rate since the major potential advan-
tage of the SMO over a linear observer such as a Luenberger
observer, is that the sliding observer can be made consid-
erably more robust to parametric uncertainty and external
disturbances [27].

Let us define the uncertain term as

ψ = −µ(s)z
Yd(s)

(7)

Then, the new state vector is defined as follows:

x =
[
s

ψ

]

The dynamics of the uncertain term is given by

ψ̇ = γ (s, ψ) = − d

dt

(
µ(s)z

Yd(s)

)
(8)

Sinceµ(s), x andYd(s) are not known,γ (s, ψ) is also
unknown. To get a reliable control law, in the next section an
SMO is used to obtain an estimate (ψ̂) of the uncertain term.

3. Estimator and controller design

SMO is a high performance state estimator well suited
for nonlinear uncertain systems with partial state feedback
[17]. The sliding function of this observer is the estimation
error of the available output. The basic SMO structure con-
sists of switching terms added to a conventional Luenberger
observer. In Section 3.1 a brief review of SMO is presented
[22].

3.1. Sliding observer for SISO systems

Consider the state space representation of a second order
nonlinear system in noncompanion form

ẋ1 = f1(x1, x2), ẋ2 = f2(x1, x2) (9)

where x = [x1, x2]T is the state space vector andx1 is
assumed to be the only measurable state.f1(x1, x2) and
f2(x1, x2) are nonlinear unknown functions.

The observer task is to estimate the statex. The observer
dynamics can be written as

˙̂x1 = f̂1(x̂1, x̂2)− α1x̃1 − k1 sgn(x̃1)

˙̂x2 = f̂2(x̂1, x̂2)− α2x̃1 − k2 sgn(x̃1) (10)

whereα1, α2, k1 andk2 are positive numbers.̃x1 = x̂1 − x1
is the estimation error.f̂1(x̂1, x̂2) and f̂2(x̂1, x̂2) are esti-
mated values off1(x̂1, x̂2) andf2(x̂1, x̂2), respectively. The
function sgn(·) is defined as follows:

sgn(x̃1) =



−1 if x̃1 < 0
0 if x̃1 = 0
1 if x̃1 > 0

Using (9) and (10) the resulting error dynamics can be
written as

˙̃x1 = 1f1 − α1x̃1 − k1 sgn(x̃1)

˙̃x2 = 1f2 − α2x̃1 − k2 sgn(x̃1) (11)

where1f1 = f̂1(x̂1, x̂2)−f1(x̂1, x̂2) and1f2 = f̂2(x̂1, x̂2)

− f2(x̂1, x̂2).
The sliding condition for (11) can be expressed as

x̃1
(
1f1(x̂1, x̂2)− α1x̃1 − k1 sgn(x̃1)

)
< 0 (12)

Once the sliding takes place (i.e.x̃1 = 0) the resulting
error dynamics takes the form

˙̃x2 = −k1

k2
1f1 +1f2 (13)

Some important issues regarding the above observer de-
pends on the structure of1f1 and1f2. System (9) is ob-
servable iff1 is a single valued function ofx2. In addition,
1f1 must be a function of̃x2 in order for the control term
−(k1/k2)1f1 to have an influence on the error dynamics.

Remark 4 (R4). The sliding mode of system(9) can be
reached ifk1 andk2 are different from zero.

3.2. Application to a class of bioreactors

In this section, the SMO previously described is applied
to the bioreactor given by (1) and (8), which can be rewritten
under the form (9) as follows:

ṡ = f1(s, ψ), ψ̇ = f2(s, ψ) (14)

wheref1(s, ψ) = −D(sf −s)+ψ andf2(s, ψ) = γ (s, ψ).
Note thatf1(s, ψ) in (14) is a single valued function ofψ ,
thus, system (14) is observable.

The SMO (10) for system (14) is

˙̂s = f̂1(s, ψ̂)− α1s̃ − k1 sgn(s̃)
˙̂
ψ = f̂2(s, ψ̂)− α2s̃ − k2 sgn(s̃)

where s̃ = ŝ − s. In this work, the estimated values for
f1(s, ψ) andf2(s, ψ) are chosen as follows:

f̂1(s, ψ̂) = −D(sf − s)+ ψ̂ f̂2(s, ψ̂) = 0

Note thatf̂1(s, ψ̂) involves the actual substrate concentra-
tion, however, since this state is measurable, the computation
of f̂1(s, ψ̂) is reliable. This modification does not change
the convergence of the proposed observer. The choice of0

will be discussed later. Note that1f1 is a function ofx̃2,
which implies that the control term−(k1/k2)x̃2 has influ-
ence on the error dynamics.

The SMO used to get an estimate of the uncertain term is

˙̂s = −D(sf − s)+ ψ̂ − α1s̃ − k1 sgn(s̃)
˙̂
ψ = 0 − α2s̃ − k2 sgn(s̃) (15)
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Using (14) and (15), the resulting error dynamics takes
the form

˙̃s = ψ̃ − α1s̃ − k1 sgn(s̃) ˙̃
ψ = �− α2s̃ − k2 sgn(s̃)

(16)

where� = 0 − γ (s, ψ). The conditions for the existence
of the sliding mode (̃s = 0) are

ψ̃ ≤ α1s̃ + k1 if s̃ > 0 ψ̃ ≥ α1s̃ − k1 if s̃ < 0 (17)

The sliding dynamics (̃s = 0) is as follows

˙̃
ψ = −k2

k1
ψ̃ +� (18)

Note that (18) is a filter between� and ψ̃ with a cut-off
frequency atk2/k1. The next result shows the conditions for
the practical observability of the system (12).

Proposition 1. Suppose that Assumptions(A1)–(A4) hold,
and choose

k2 > ξ ≥ |�(t)|
Then the system(15) is a practical observer of system(14),
i.e. there exists a compact setC1 ⊂ R2 such that all tra-
jectoriesx̃(t) = x̂(t) − x(t) beginning inC1 can be driven
arbitrarily close to the origin.

Proof. The integration of the sliding dynamics (18) pro-
duces the following expression

ψ̃(t) =
∫ t

t0

exp

(
k2

k1
(σ − t)

)
�(σ)dσ + ψ̃(0)exp

(
−k2

k1
t

)

where ψ̃(0) is the initial condition forψ̃(t). Taking the
absolute value of the above equation

|ψ̃(t)| ≤
∫ t

t0

exp

(
k2

k1
(σ − t)

)
|�(σ)| dσ

+ |ψ̃(0)| exp

(
−k2

k1
t

)
, t > t0 (19)

Suppose there exists a positive constantξ such that

ξ ≥ |�(σ)|
Eq. (19) can be expressed as

|ψ̃(t)| ≤ k1

k2
ξ

(
1 − exp

(
k2

k1
(t0 − t)

))
+ |ψ̃(0)| e−γ t (20)

From the above equation it is clear that

lim
t→∞|ψ̃(t)| ≤ k1

k2
ξ

Recall thatk1 and k2 are adjustable parameters. Ifk2 is
chosen in such a way thatk2 > ξ then

lim
t→∞|ψ̃(t)| ≤ k1 (21)

The above equation means thatψ̃(t) converges asymptoti-
cally to the ballB1(r) with radiusr ∼ k1 �
Remark 5 (R5). In accordance with Proposition1, k1 can
be viewed as the desired precision inψ̃(t).

3.3. Linearizing control law

The following step is to study the stability of the resulting
closed-loop system. Note that in the dynamics of the esti-
mation error for the uncertain termψ(t) the control input
does not appear. This means that the dynamic behavior of
ψ(t) is independent of the control input. Then, by Proposi-
tion 1, the closed-loop dynamic behaviorψ̃(t) is stable, i.e.
|ψ̃(t)| → k1 as t → ∞. However, the closed-loop stability
of s(t) must be proved.

Using the uncertainty estimation algorithm given by (15),
the input–output linearizing controller for the bioreactor
(14) is

D = 1

sf − s
(τ−1

c s̄ + ψ̂) (22)

With the previous control law, the closed-loop dynamics for
the substrate concentration is as follows

ṡ = −τ−1
c s̄ − ψ̃ (23)

Without loss of generality, let us consider the regulation
control problem, that is,̇sref = 0. The dynamics for the
regulation error is

˙̄s = −τ−1
c s̄ − ψ̃ (24)

The next result shows the conditions for practical stability
of the closed-loop system.

Proposition 2. Suppose that Assumptions(A1)–(A4) hold,
and k2 is chosen in accordance with Proposition1. Then
the dynamic compensator(15), (22)is a practical stabilizer
for system(1), i.e. there exists a compact setC2 ⊂ R such
that all trajectoriess̄(t) = s(t) − sref beginning inC2 can
be driven arbitrarily close to the origin.

Proof. Solving the tracking error dynamics (24) renders:

s̄(t) =
∫ t

t0

exp(τ−1
c (σ − t))ψ̃(σ )dσ + s̄(0)exp(τ−1

c t)

wheres̄(0) is the initial condition fors̄(t). Taking absolute
value on both sides of the last equation allows us to obtain
the following inequality:

|s̄(t)| ≤
∫ t

t0

exp(τ−1
c (σ − t))|ψ̃(σ )| dσ

+ |s̄(0)| exp(τ−1
c t) (25)

In the limit, whent → ∞, the following expression is ob-
tained:

lim
t→∞|s̄(t)| ≤ lim

t→∞

∫ t

t0

exp(τ−1
c (σ − t))|ψ̃(σ )| dσ (26)
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Let ψ̃m = max
t

{|ψ̃(t)| : t0 ≤ t ≤ tm} be the maximum

value of|ψ̃(t)|. This maximum value exists, by (3),(4) and
(17), and Proposition 1. Then

lim
t→∞

∫ t

t0

exp(τ−1
c (σ − t))|ψ̃(σ )| dσ

≤ ψ̃m lim
t→∞

∫ t

t0

exp(τ−1
c (σ − t))dσ (27)

But we have

ψ̃m lim
t→∞

∫ t

t0

exp(τ−1
c (σ − t))dσ ≤ ψ̃mτc (28)

In consequence

lim
t→∞|s̄(t)| ≤ τcψ̃m (29)

The last inequality implies that one can make the estimation
error as small as desired, if a small enough value forτc is
chosen, i.e.̄s(t) converges asymptotically to the ballB1(r)

with radiusr ∼ τcψ̃m. �

Remark 6 (R6). The size of the ballB1(r) with radiusr ∼
τcψ̃m, can be made as smaller as desired by choosingτc
small enough.

4. Numerical example

In order to illustrate the performance of the observer and
the closed-loop system, numerical simulations were carried
out by considering the following values for the parameters
involved in the bioreactor model described in Section 2.

Parameter Value

µm 0.3
Km 1.75
a′ 0.01
b′ 0.03
sf 35.0

Using these values, [25] found that the system presents
two steady states, and a limit cycle is displayed around the
nonwash-out steady-state (zs = 1.872 g/l, ss = 1.531 g/l)
for a nominal dilution rate equal toD = 0.14 h−1. It was de-
sired to control the system at the nonwash-out steady-state,
i.e. the reference value for the substrate concentration was
chosen assref = 1.531 g/l. The values for the SMO param-
etersα1 andα2 were chosen using Luenberger-like observer
tuning rules.

The initial conditions for the concentrations in the biore-
actor were:s(0) = 0.0 g/l and z(0) = 1.0 g/l. With these
conditions, the initial value of the uncertain term isψ =
−µ(s)z/Yd(s) = 0. Then, the initial conditions for the SMO
were taken as:̂s(0) = 0.0 andψ̂(0) = 0.0.

In all the simulations0 = 0 because there is no prior in-
formation about the uncertain change rate (γ (s, ψ)). Then,

Fig. 1. Contour plot forγ around the set point.

in accordance with Propositions 1 and 2, both the observer
and the controller will be practically convergent ifk2 >

|γ (z, s)|. To set the value ofk2, off-line experiments can
be done. Fig. 1 shows the uncertainty change rate (γ ) as
a function of the biomass and substrate concentrations in a
neighborhood of the reference point. It is clear that around
the reference point, the variations ofγ are not severe. On the
other hand, when all the operating conditions that the biore-
actor can reach are considered, the variations ofγ are se-
vere. These variations can be explained taking into account
the autocatalytic nature for most of the microbial reactions.
When the biomass concentration is large, the substrate con-
sumption rate reaches its maximum value. In spite of this,
the area of operation conditions, whereγ (z, s) is almost
constant is big enough.

Fig. 2 shows the effect ofk2 on the convergence of the
open-loop observer. It shows two simulations with different

Fig. 2. Open-loop dynamic behavior for different values ofk2.
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Fig. 3. Open-loop dynamic behavior for different values ofk1.

values ofk2 (k2 = 0.65 andk2 = 1.0) with k1 = 0.001.
This figure shows that the observer does not converge with
k2 = 0.65. On the other hand, withk2 = 1.0, the observer
displays practical convergence. It is important to notice that
the largest deviations between the real and the estimated
uncertainty arise at the maximum uncertainty change rate
(s ≈ 0.0). In all the simulations shown belowk2 = 15.0.

The effect ofk1 on the performance of the open-loop
observer is analyzed in Fig. 3. Recall thatk1 is chosen as
a bound on the steady state estimation error onψ̃(t). As
one can see from Figs. 3a and b, reducingk1 decreases
the bandwidth for the substrate estimation error. However,
reducingk1 increases the bandwidth on the sliding patch
[23].

Fig. 4 shows the closed-loop system behavior with
noise-free substrate measurements using a sustained per-
turbation on the concentration of substrate flow feed. The
sustained perturbation was taken according to the following
expression:

sf = s0
f + A sin(ωt),

wheres0
f = 35.0 g/l, A = 5.0 g/l, andω = 0.2 h−1. In this

figure, two different values were taken for the closed-loop
characteristic time (τc). The performance in both cases is
satisfactory.

The major advantage of sliding mode observers is that
they can be made considerably more robust to paramet-
ric uncertainties and noisy measurements. Fig. 5 shows the
closed-loop time evolution of the substrate concentration and
the dilution rate using substrate concentration measurements
corrupted by additive white noiseυ(t). The sustained per-
turbation on the concentration of substrate flow feed was not

Fig. 4. Closed-loop behavior as a function ofτc.

Fig. 5. Closed-loop performance with substrate concentration noisy mea-
surements.

included. The amplitude of the noise was taken as|υ(t)| ≤
0.1. In this figure, the bandwidth of the noise on the sub-
strate measurements was included. Note that the proposed
controller maintains the substrate concentration in a small
neighborhood of the reference value despite the noise on the
substrate concentration measurements. As a matter of fact,
the size of this neighborhood is smaller than the size of the
noise bandwidth.



32 J. Gonzalez et al. / Chemical Engineering Journal 83 (2001) 25–32

5. Future work

To obtain a better closed-loop performance it is necessary
to eliminate the undesirable chattering effect. Some strate-
gies have been proposed to face this problem. The most com-
mon approach [26] is to replace the sign function in (10) by
a saturation function, sat(x̃1/φ), which is defined as

sat

(
x̃1

φ

)
=




x̃1

φ
if

∣∣∣∣ x̃1

φ

∣∣∣∣ ≤ 1

sgn

(
x̃1

φ

)
if

∣∣∣∣ x̃1

φ

∣∣∣∣ > 1

whereφ is the boundary layer thickness which is made vary-
ing to take advantage of the system bandwidth. One draw-
back of varying the boundary layer is that for some systems
the boundary width can become large. On the other hand, for
some systems, the sat() function does not give satisfactory
results [14]. Then, as future work, it is necessary to eval-
uate the closed-loop performance using different strategies
for chattering reduction.

6. Conclusions

A control strategy to regulate a class of partially known
bioreactors was proposed in this work. The proposed con-
trol algorithm takes advantage of the self-regulatory charac-
teristic of the biological processes. The central idea of the
proposed technique is to consider the modeling uncertain-
ties as a new nonmeasurable state variable and to obtain
estimates of this new state using an SMO. The conditions
for practical convergence of the observer and the controller
were developed. A characteristic of the resulting observer is
that their parameters have physical meaning. The open-loop
and closed-loop performance of the proposed controller was
illustrated via numerical simulations. It was shown that this
controller is able to regulate the substrate concentration de-
spite modeling uncertainties, external sustained perturba-
tions and noisy measurements.
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